Gate Engineering on the Analog Performance of DM-DG MOSFETs with High K Dielectrics

نویسنده

  • VIJAYA KUMAR
چکیده

Considerable challenges are encountered when bulk CMOS devices are scaled into the sub-100 nm regime for higher integrated circuit (IC) density and performance. Due to their excellent scalability and better immunity to short channel effects, double-gate (DG) MOSFETs are being easily assessed for CMOS applications beyond the 70 nm of the SIA roadmap. For channel lengths below 100 nm, DG MOSFETs still show considerable threshold voltage roll off and to overcome this effect, different gate engineering techniques can be widely used. In this paper, we investigate the influence of gate engineering on the analog and RF performances of dual material double gate (DM-DG) MOSFETs for systemon-chip applications with high K dielectrics using a 2D device simulator. Equivalent oxide thickness (EOT) of gate oxide can be reduced by the usage of high K dielectric materials. The gate engineering technique used here is the dual metal gate technology. This novel structure shows better immunity to DIBL and improved analog performance like trans conductance generation factor, early voltage, output resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Double Gate n-FinFET Using High-k Dielectric Materials

To extend the use of CMOS technology beyond 14 nm node technology, new device materials are required that can enhance the performance of MOSFETs. The use of high-k materials in double gate (DG) MOSFET can triumph over the problem of power dissipation and leakage current. In this paper, we investigated various high-k dielectrics as the gate oxides in a 12 nm SOI FinFET and the performance potent...

متن کامل

Channel thickness dependency of high-k gate dielectric based double-gate CMOS inverter

This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...

متن کامل

Silicon-based devices and materials for nanoscale CMOS and beyond-CMOS

At the end of the ITRS, new materials, nanotechnologies and device architectures will be needed for nanoscale CMOS and beyond-CMOS. Silicon-on-insulator (SOI)-based devices are promising for the ultimate integration of electronic circuits on silicon [1]. We will discuss a number of key issues, including: the performance of singleand multi-gate thin film MOSFETs; the comparison between Si, Ge an...

متن کامل

Inversion-mode InxGa1-xAs MOSFETs (x=0.53,0.65,0.75) with atomic-layer- deposited high-k dielectrics

High-performance inversion-type enhancement-mode (E-mode) nchannel MOSFETs on In-rich InGaAs using ALD Al2O3 as high-k gate dielectrics are demonstrated. The maximum drain current, peak transconductance, and the effective electron velocity of 1.0 A/mm, 0.43 S/mm and 1.0x10 cm/s at drain voltage of 2.0 V are achieved at 0.75-μm gate length devices. The device performance of In-rich InGaAs NMOSFE...

متن کامل

Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits

Use of independently-driven nano-scale double gate (DG) MOSFETs for low-power analog circuits is emphasized and illustrated. In independent drive configuration, the top gate response of DG-MOSFETs can be altered by application of a control voltage on the bottom gate. We show that this could be a powerful method to conveniently tune the response of conventional CMOS analog circuits especially fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010